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SUMMARY

This paper describes two kinds of practical numerical techniques for heat transfer problems. One is a
parallel large eddy simulation technique with heat transfer using tetrahedral �nite elements and the other
is the Voxel method using a uniform grid combined with the discrete element method for liquid–solid
two-phase �ow problems. These two approaches are taken to be the candidates for the practical use
of large-scale heat transfer analysis for various kinds of problems. The former can reduce the overall
computing time in performing a large-scale heat transfer analysis through the combined use of an
automatic mesh generation software, and the latter is very useful and e�cient to analyse a complicated
heat transfer phenomena such as a liquid–solid two-phase �ow in a �uidized bed. Numerical examples
for both approaches show fairly good agreement with experimental results and these two methods are
demonstrated to be powerful tools for analysing large-scale and complicated heat transfer problems.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Owing to recent advances in computer capabilities, numerical analyses are now widely used in
various kinds of design of manufacturing products and of investigation of complex phenomena.
The important subjects for practical use of numerical analysis are development of numerical
simulation system accompanied by a fully automatic mesh generation based on CAD data and
a highly e�cient numerical technique for very large-scale analysis. Two approaches may be
considered as the candidates along this line. One is the �nite element analysis using tetrahedral
elements and the other is so called Voxel method using uniform orthogonal �nite di�erence
grids. In this paper, we examine the possibilities of these two approaches.
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Firstly, we present a parallel LES (large eddy simulation) for viscous incompressible �ow
with heat transfer based on the �nite element method using tetrahedral elements. Due to the
progress of Delaunay method [1] and other tetrahedral mesh generation techniques [2], it is
easy to generate and control tetrahedral �nite-element meshes for �ow problems with complex
geometries. A new algorithm based on the SIMPLER method [3] is proposed to solve the
Navier–Stokes equations, in which BTD (balancing tensor di�usivity) [4] is introduced to
ensure numerical stability. The Smagorinsky model is applied to approximate the Reynolds
stress and the zero-equation model is employed to solve the energy equation. Parallelization
of the code is based on the domain decomposition method and the recursive graph bisection
algorithm [5] is used to reduce the communication time between processors. Numerical results
for heat transfer problems in a rotating cavity are shown to demonstrate the e�ectiveness of
the present method.
Secondly, we show a two-dimensional numerical simulation of �uidized beds based on the

Voxel method combined with the discrete element method (DEM) [6], in which particle mo-
tion is calculated using ordinary Newton’s equation of motion, modelling the contact forces
by the DEM. For this kind of problems, Tezduyar et al. [7–9] analysed behaviour of multiple
spheres falling in a liquid-�lled tube based on a stabilized space-time �nite element formu-
lation. In our analysis, the locally averaged Navier–Stokes equations are solved to analyse
the �uid motion, taking the interaction between �uid and particle into consideration. Flow
and temperature �elds are solved by the �nite di�erence method with uniform grid size, the
so-called Voxel method. Numerical results for a �uidized bed are also demonstrated.
Through these two analyses, both of the �nite element method using tetrahedral elements

and the voxel method using orthogonal uniform grids are shown to be powerful tools for
practical large-scale heat transfer and �uid �ow problems.

2. PARALLEL LARGE EDDY SIMULATION USING TETRAHEDRAL
FINITE ELEMENTS

Here we introduce a three-dimensional parallel LES technique using tetrahedral �nite element
meshes for heat transfer problems.

2.1. Solution algorithm

The governing equations for viscous incompressible �ow problems with heat transfer are
given by the Navier–Stokes equations, equation of continuity and the energy equation, and
are expressed in tensor form using summation conventions as follows:

U̇i +UjUi; j =−P; i=�+ �(Ui; j +Uj; i); j (1)

Ui; i =0 (2)

Ṫ + (UjT ); j = �T; ii (3)

where Ui is the velocity component in the xi direction, P is the pressure, � is the density, � is
the kinematic viscosity, T is the temperature, � is the thermal di�usivity and the superscripted
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dot ‘·’ indicates a time derivative. The boundary conditions for a �ow �eld are given on the
boundary �(�=�1 + �2) as

Ui = Ûi on �1 (4)

P=0; njUi; j = 0 on �2 (5)

where the hat indicates prescribed values and ni is the direction cosine, with respect to the xi
axis, of the normal n drawn outward on the boundary �.
The fractional step method [10] accompanied by the correction term of the BTD [4] is used

to solve the Navier–Stokes equations for the purpose of achieving the equal-order interpolation
for the velocity and the pressure. By applying the implicit scheme to the prediction stage and
applying the two-step correction of the SIMPLER procedure [3] to the correction stage, the
following three-step scheme, in which the �ow �eld is proceeded by a time increment �t, is
introduced to ensure an accurate and stable computation:
Step 1:

(Ũi − Un
i )=�t = (1− �)Fn

i + �F̃i (6)

Step 2:

�; ii =−Ũi; i (7)

Pn+1 =−�=��t (8)

U ∗
i = Ũi + �; i (9)

Step 3:

’; ii =−U ∗
i; i (10)

Un+1
i =U ∗

i + ’; i (11)

where

Fn
i = − Un

j U
n
i; j +Un

k (U
n
j U

n
i; j); k�t=2− �Un

i; jj (12)

where Ũi is the velocity for the prediction stage and �;  are the potential functions for
the �rst and the second correction, respectively. The second term of the right hand side of
Equation (12) indicates the BTD term. In our analysis, � is set to 0.5 as in the Crank–
Nicholson method to avoid an excessive arti�cial di�usion.
The Galerkin method is employed for the �nite-element formulations and the linear tetra-

hedral elements are used to discretize Equations (6)–(11). The parallel matrix solver is
used to solve the linear equations de�ned by Equations (6), (7), and (10). To solve
Equations (9) and (11), the elemental residuals are �rstly calculated and then the elemental
residuals are scattered to the nodal residuals using the lumped mass matrix.
In this study, the LES technique is applied to accurately simulate the turbulence. The

governing equations for the LES are the �ltered Navier–Stokes equations and the continuity
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equation and are expressed in tensor form using summation conventions as follows:

�̇Ui + �Uj �Ui; j =− �P; i=�+ {�( �Ui; j + �Uj; i)− U ′
i U ′

j }; j (13)

�Ui; j =0 (14)

where �Ui and �P denote the grid-scale velocity component and the pressure, respectively,
and −U ′

i U ′
j is the Reynolds stress. The Reynolds stress is modelled by the commonly used

Smagorinsky model as follows:

− U ′
i U ′

j = �SGS( �Ui; j + �Uj; i)− �ijU ′
kU

′
k =3 (15)

�SGS = (C�)2(2 �Sij �Sij)0:5; �Sij=( �Ui; j + �Uj; i)=2 (16)

where

�ij =

{
1 (i = j)

0 (i �= j)
(17)

where C is the Smagorinsky model constant set to a value of 0.15 in the present study and
� is the representative element dimension which will be calculated from the volume of each
�nite element. By substituting Equation (15) into Equation (13), the following equation is
obtained:

�̇Ui + �Uj �Ui; j = − �P; i=�+ (�+ �SGS)( �Ui; j + �Uj; i); j (18)

Instead of solving Equation (1), we solve Equation (18) using the algorithm shown in
Equations (6)–(11).
For the energy equation (3), various kinds of turbulence model have been proposed so far.

In the present analysis, the following 0-equation model is employed:

Ṫ + (UjT ); j = (�+ �SGS)T; ii

�SGS = �SGS=PrSGS (19)

where PrSGS is SGS Prantl number and is set to 0.4.

2.2. Numerical examples

To verify the e�ectiveness of the present method, we computed the natural convection problem
in a cubic cavity as shown in Figure 1. We used the Hitachi SR2201 machine, which has 256
processor-nodes. Its peak performance is 300 M�ops in each processor giving a total of 76.8
G�ops. To accurately capture the boundary layer, we used the combination of Delaunay-type
mesh generation for internal computational domain and the structured-type generation near
the wall surface. The RGB (recursive graph bisection) method which has the merit on the
partitioning CPU time and memory usage, was selected to partition the �nite element meshes.
Figure 2 is the mesh used in the analysis. Computations are carried out for the Rayleigh
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Figure 1. Analysis model and boundary conditions.

Figure 2. Global and sectional view of the mesh: (a) global view; and (b) sectional view.

Figure 3. Velocity vectors computed by the present scheme (left) and streamline computed by
De Vahl Davis [11] (right): (a) Ra=104; and (b) Ra=106.

number from 103 to 1010. In Figures 3 and 4, we show the computed velocity vector and
temperature pro�les at Ra=104 and 106 in the central cross section as shown in Figure 1.
Figure 5 demonstrates the comparison of the mean Nusselt number at the hot wall between
the present and conventional calculations. The present results showed good agreement with the
results of De Vahl Davis [11] or Le Quere [12] and we were able to stably calculate the high
Rayleigh number case (Ra=109–1010). We applied the present scheme to the heat transfer
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Figure 4. Temperature pro�les computed by the present method (left) and by
De Vahl Davis [11] (right): (a) Ra=104; and (b) Ra=106.

Figure 5. Computed mean Nusselt number on the hot wall in a cubic cavity.

problem in a rotating heated cavity, which often appears in the cooling of real products.
Figure 6 shows a computational model and mesh. The computed velocity vectors in the cross
section of a rotating cavity are shown in Figure 7, and the computed mean Nusselt number
on a heated wall is shown in Figure 8. Numerical results showed good agreement with the
experimental results.
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Figure 6. Analysis mesh and boundary conditions for a rotating cavity problem.

Figure 7. Close up of velocity vectors in a rotating cavity.

3. LIQUID–SOLID TWO-PHASE FLOW ANALYSIS BY THE VOXEL
METHOD AND DISCRETE ELEMENT METHOD

Another possibility of practical large-scale heat transfer analysis is the use of Voxel method,
in which a uniform orthogonal �nite di�erence grid is employed. Here we show a two-
dimensional numerical simulation of heat transfer and �uid �ow problem in a solid–liquid
�uidized bed as an example to demonstrate the e�ectiveness of this method. Advantages of
the Voxel method are easy mesh generation and rapid convergence of the pressure equation.
These advantages result in large reduction of analysis time in large-scale �uid �ow and heat
transfer analyses.
As is well-known, liquid–solid �uidized beds show excellent heat transfer characteristics

due to mixing a �ow �eld by moving particles, and attract many attentions for a design
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Figure 8. Comparison of Nusselt number.

of a high-performance heat exchanger. Although the hydrodynamic mechanism of liquid–
solid �uidization has been extensively studied by several researchers, the research on heat
and mass transfer problems still remain largely empirical, especially for liquid–solid �uidized
beds. Recently, �ow analysis using the discrete element method, in which solid particle motion
is calculated based on ordinary Newton’s equation of motion, modelling the contact forces by
the DEM [6,13]. However, this approach is limited to the �ow analysis in gas–solid �uidized
beds so far. In what follows, we propose a Voxel method combined with the DEM and apply
the method to �ow and heat transfer analysis in a liquid–solid �uidized bed with particles of
a little small density compared with the working �uid.

3.1. Governing equations

Fluid �ow in a �uidized bed is a very complicated �ow through moving particles from a
microscopic point of view and is di�cult to permit direct solution. Therefore we employ
the following equations which are originally developed by Anderson and Jackson [14] and
are obtained by locally averaging the Navier–Stokes equations over regions which contain
particles but are still small compared with the scale of macroscopic variations from point to
point in the system.

�̇+ (�ui); i =0 (20)

�u̇+ (�uiuj); j =−�p; i=�+ ��ui; jj + fi (21)

��cp(Ṫ + uiT; i) = (��T ); ii (22)

In the above equations, � is the local mean void fraction, ui and p are the local mean velocity
components and pressure, respectively, � is the density, cp is the speci�c heat of the �uid
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and T is the local mean temperature. The last term of Equation (21) is the interaction term
between particles and �uid and is given by

fi=	(vpi − ui)=� (23)

where vpi is the velocity component of a particle in xi direction and drag coe�cient 	 is
given by

	=




��(1− �){150(1− �) + 1:75Re}=(d2p�2) (�60:8)

0:75CD��(1− �)�−2:7Re=d2p (�¿0:8)
(24)

CD =

{
24(1 + 0:15Re0:687)=Re (Re61000)

0:43 (Re¿1000)
(25)

Re= |vp − �u|�dp=� (26)

where CD is the drag coe�cient for a sphere and Re is the Reynolds number with respect
to each particle which is de�ned by a relative �uid velocity and the particle diameter. The
maximum value of Re is around 1000 in our analyses.
In the present analysis, three kinds of grid, coarse grid, �ne grid and particle grid, are used

in order to make detailed numerical analysis in a �uidized bed with a heated cylinder as shown
in Figure 9. The coarse grid is necessary for computing void fraction and interacting force
between �uid and particles, because these values should be calculated by space averaging in
a grid larger than a particle diameter. The detailed �ow analysis is performed using a �ne
grid generated by dividing a coarse grid cell into several grids. Particle grid is to compute
�uid forces acting on each particle and is formed by assembling several �ne grids covered
a region about two times larger than a particle diameter. Governing equations are solved by
the SIMPLE algorithm [3].

3.2. Motion of particles

Many solid particles in a high-density solid–liquid two-phase �ow such as in a �uidized bed
are moved around repeating contact with each other. Therefore, solid particles interact with
each other through these contact forces. Cundal and Strack [15] modelled these forces by
springs, dashpots and friction sliders as shown in Figure 10. In our analysis, contact forces
between particles each other and=or between particles and a wall are calculated by this discrete
element model, and the motion of a particle is computed in a Lagrangian manner by ordinary
Newton’s equation of motion:

mv̇p = F (27)

F= fC + fD + fG (28)

where fC is the contact force, fD is the �uid force and fG is the gravity force.
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Figure 9. Three kinds of grid.

Figure 10. Discrete element model.

As for rotational motion of particles, we assume that only the contact forces a�ect the
motion. Therefore, in terms of moment caused by the contact forces M and inertia moment
I , the governing equation of rotational motion is given by

I !̇=M (29)
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Integrating Equations (27) and (29), we can compute the velocity vn+1p and angular velocity
�n+1 of a particle at the next time step as follows:

vn+1p = vnp + v̇p�t (30a)

!n+1 =!n + !̇�t (30b)

Integrating Equation (30a) with respect to time, the position of a particle rn+1 can be obtained
by

rn+1 = rn + vnp�t (31)

It is noted here that the angular velocity ! is used to calculate the tangential component of
a contact force.

3.3. Computational results

The region of interest is a �uidized bed with an internal heated cylinder as shown in Figure 11.
The inputs parameters used in the present analysis are summarized in Table I. Regarding the
number of particles, 1548 particles in case of particle diameter 4:76mm or 538 particles in
case of 7:94mm are disposed so as to realize nearly the same initial thickness of particle
layer. As the density of a particle is somewhat small compared with the working �uid, a
honeycomb structure is placed at the upper end of the test section to prevent particles from
leaving out of this region. The working �uid (water) �ows in the region from the upper

26

65

130

tube

12
5

70
0

Figure 11. Region of analysis (all in mm unit).
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Table I. Analysis condition.

Particle (TPX)

Diameter 7:94mm
4:76mm

Density 833 kg=m3

Number 538 (7:94mm)
1548 (4:76mm)

Fluid (water)

Density 1000 kg=m3

Viscosity 10−3 Pa∗s

Flow passage

Width 0:13m
Height 0:70m

Calculation

Time increment 0:001 s
Cell size 2× 2mm

Figure 12. Particles motion at various inlet �uid velocity (dp=4:76mm).

boundary. The change in the particle behaviour with the increase of the inlet �uid velocity
is shown in Figure 12. From these �gures, it is seen that the motion of particles becomes
active as the inlet �uid velocity increases and �uidization initiates at the inlet �uid velocity
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Figure 14. Average heat transfer coe�cient on a heated cylinder surface.

of more than 0.02m=s. In Figure 13, the change of pressure drop with the increase of inlet
�uid velocity is illustrated, compared with experimental results obtained in our laboratory. It
is con�rmed experimentally that after starting �uidization, the pressure drop settles down to
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nearly the same level, irrespective of the inlet velocity. The computed results in Figure 13
agree well with these experimental results.
Figure 14 shows the average heat transfer coe�cient on the surface of a heated cylin-

der that is calculated for various inlet �uid velocities. Solid circles denote the heat transfer
coe�cient for pure forced convection without particles. Although the present analyses are two-
dimensional analyses, the enhancement of heat transfer due to �uidization is clearly shown in
this �gure.
It is noted here that the extension of this method to a three-dimensional problem is straight-

forward.

4. CONCLUSIONS

A three-dimensional parallel LES technique for viscous incompressible �ow with heat transfer
using tetrahedral �nite-elements and a two-dimensional Voxel method combined with the
discrete element method for liquid–solid two-phase �ow are presented in this paper. Numerical
examples for both methods show good agreement with those of other researchers and the
experimental results. These two methods are completely di�erent approaches for large-scale
heat transfer and �uid �ow problems, however both of these two approaches have proved to
be powerful tools for the analysis of realistic large-scale heat transfer problems.

REFERENCES

1. Johnson AA, Tezduyar TE. Parallel computation of incompressible �ows with complex geometries. International
Journal for Numerical Methods in Fluids 1997; 24:1321–1340.

2. Chan CT, Anastasiou K. An automatic tetrahedral mesh generation scheme by the advancing front method.
Communications in Numerical Methods in Engineering 1997; 13:33–46.

3. Patankar SV. Numerical Heat Transfer and Fluid Flow. McGraw-Hill: New York, 1980.
4. Gresho PM, Chan ST, Lee RL, Upson CD. A modi�ed �nite element method for solving the time-dependent
incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids 1984; 4:
557–598.

5. Farhat C, Lesoinne M. Automatic partitioning of unstructured meshes for the parallels solution of problems in
computer mechanics. International Journal for Numerical Methods in Engineering 1993; 36:745–764.

6. Kawaguchi T, Tanaka T, Tsuji Y. Numerical simulation of two-dimensional �uidized beds using the discrete
element method. Powder Technology 1998; 96(2):129–138.

7. Johnson AA, Tezduyar TE. Simulation of multiple spheres falling in a liquid-�lled tube. Computer Methods in
Applied Mechanics and Engineering 1996; 134:351–373.

8. Johnson A, Tezduyar TE. Advanced mesh generation and update methods for 3D �ow simulations.
Computational Mechanics 1999; 23:130–143.

9. Johnson A, Tezduyar TE. Methods for 3D computation of �uid-object interactions in spatially-periodic �ows.
Computer Methods in Applied Mechanics and Engineering 2001; 190:3201–3221.

10. Donea J, Giuliani S, Laval H. Finite element solution of the unsteady Navier–Stokes equations by a fractional
step method. Computer Methods in Applied Mechanics and Engineering 1982; 30:53–73.

11. De Vahl Davis G. Natural convection of air in a square cavity. International Journal for Numerical Methods
in Fluids 1983; 3:249–264.

12. Le Quere P. Accurate solutions to the square thermally driven cavity at high Rayleigh number. Computers
Fluids 1991; 20(1):29–41.

13. Gomes JLMA, Pain CC, de Oliveira CRE, Goddard AJH. Heat transfer models for gas–solid �uidized beds
with internals. Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics, 2001;
1199–1204.

14. Anderson TB, Jcakson R. A �uid mechanical description of �uidized beds. I and EC Fundamentals 1967;
6(4):527–539.

15. Cundall PA, Strack ODL. Geotechnique 1979; 29(1):47–65.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:561–574


